Automated Problem and Allergy Lists Enrichment Based on High Accuracy Information Extraction from the Electronic Health Record
Medical errors are recognized as the cause of numerous deaths, and even if some are difficult to avoid, many are preventable. Computerized physician order-entry systems with decision support have been proposed to reduce this risk of medication errors, but these systems rely on structured and coded information in the electronic health record (EHR). Unfortunately, a substantial proportion of the information available in the EHR is only mentioned in narrative clinical documents. Electronic lists of problems and allergies are available in most EHRs, but they require manual management by their users, to add new problems, modify existing ones, and the removal of the ones that are irrelevant. Consequently, these electronic lists are often incomplete, inaccurate, and out of date.
Clinacuity, Inc. proposes to develop a new system to automatically extract structured and coded medical problems and allergies from clinical narrative text in the EHR of patients suffering from cancer. To establish the merit and feasibility of such a system, we will work on the following objectives: 1) create a reference standard for training and testing the information extraction application, a reference standard including a random sample of de-identified clinical narratives from patients treated at the Huntsman Cancer Institute Cancer Clinics (Salt Lake City, Utah), with problems and allergies annotated by domain experts; 2) develop a prototype to automatically extract medical problems and allergies, implementing a novel stepwise hybrid approach to maximize sensitivity first, and also enhance positive predictive value; and 3) test the prototype with the aforementioned reference standard, using a cross-validation approach for training and testing.
Details on Clinacuity’s website.